Global Temperature May 2017 Preliminary

Climate Forecast System Reanalysis (CFSR) monthly global surface temperature anomaly estimates for 2014 through May 2017 from the University of Maine Climate Change Institute (UM CCI) and from WeatherBELL (WxBELL) are graphed below.  The UM CCI CFSR estimates have been adjusted (UM adj), while the WxBELL CFSR estimates have been left unadjusted to show the difference.  Both of these estimates showed small increases from April to May in 2017.  The UM CCI CFSR adjusted monthly estimates for August 2016 through January 2017 are based on final daily averages and for February and May 2017 are based on preliminary daily averages, and thus these preliminary monthly estimates may change slightly when the final monthly estimates are released.  Click on the graph below to see a larger copy.

Also shown for comparison are monthly global temperature anomaly estimates from seven other major sources, including lower tropospheric estimates from the University of Alabama at Huntsville (UAH) and Remote Sensing Systems (RSS), and surface estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Interim adjusted (ERAI adj), US National Center for Environmental Information (NCEI), US National Aeronautics and Space Administration (NASA) Goddard Institute of Space Studies (GISS), the UK Hadley Climate Research Unit Temperature version 4 (CRUT4), and the Berkeley Earth Surface Temperature (BEST), all final through April 2017. All estimates have been shifted to the latest climatological reference period 1981-2010.

Update 2017 June 6

Final May 2017 global temperature anomaly estimates for UAH, RSS, and ERAI adj have been added to the graph, as well as final February through May UM CCI estimates.

 

Global Temperature April 2017 Preliminary

Climate Forecast System Reanalysis (CFSR) monthly global surface temperature anomaly estimates for 2014 through April 2017 from the University of Maine Climate Change Institute (UM CCI) and from WeatherBELL (WxBELL) are graphed below along with monthly global temperature anomaly estimates for the lower troposphere derived from satellite measurements provided by the University of Alabama at Huntsville (UAH).  The UM CCI CFSR estimates have been adjusted (UM adj), while the WxBELL CFSR estimates have been left unadjusted to show the difference.  Both of these estimates showed large decreases from March to April in 2017 while the UAH estimate showed a small increase.  The UM CCI CFSR adjusted monthly estimates for August 2016 through January 2017 are based on final daily averages and for February through April 2017 are based on preliminary daily averages, and thus these preliminary monthly estimates may change slightly when the final monthly estimates are released.  Click on the graph below to see a larger copy.

Also shown for comparison are monthly global temperature anomaly estimates from eight other major sources, including lower tropospheric estimates from the Remote Sensing Systems (RSS), and surface estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Interim adjusted (ERAI adj), US National Center for Environmental Information (NCEI), US National Aeronautics and Space Administration (NASA) Goddard Institute of Space Studies (GISS), the UK Hadley Climate Research Unit Temperature (CRUT), and the Berkeley Earth Surface Temperature (BEST), all  final through March 2017, except for CRUT which is final through February 2017.  All estimates have been shifted to the latest climatological reference period 1981-2010.

The graph above shows that the various global temperature estimates converged in early 2016 and then diverged considerably later in 2016 and have remained divergent in early 2017.  The convergence seems to be associated with the strong El Niño event that peaked in early 2016.  It will be interesting to see what happens in the remainder of 2017.

Update 2017 May 6

Final April 2017 global temperature anomaly estimates for RSS and ERAI adj have been added to the graph, as well as the final March 2017 estimate for CRUT.

Global Temperature March 2017 Preliminary

Climate Forecast System Reanalysis (CFSR) monthly global surface temperature anomaly estimates for 2014 through March 2017 from the University of Maine Climate Change Institute (UM CCI) and from WeatherBELL (WxBELL) are graphed below.  The UM CCI CFSR estimates have been adjusted (UM adj), while the WxBELL CFSR estimates have been left unadjusted to show the difference.  Both of these estimates showed small increases from February to March in 2017.  The UM CCI CFSR adjusted monthly estimates for August 2016 through January 2017 are based on final daily averages and for February and March 2017 are based on preliminary daily averages, and thus these preliminary monthly estimates may change slightly when the final monthly estimates are released.  Click on the graph below to see a larger copy.

Also shown for comparison are monthly global temperature anomaly estimates from seven other major sources, including lower tropospheric estimates from the University of Alabama at Huntsville (UAH) and Remote Sensing Systems (RSS), and surface estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Interim adjusted (ERAI adj), US National Center for Environmental Information (NCEI), US National Aeronautics and Space Administration (NASA) Goddard Institute of Space Studies (GISS), the UK Hadley Climate Research Unit Temperature version 4 (CRUT4), and the Berkeley Earth Surface Temperature (BEST), all  final through February 2017, except for CRUT4 which is final through January 2017.  All estimates have been shifted to the latest climatological reference period 1981-2010.

The graph above shows that the various global temperature estimates converged in early 2016 and then diverged considerably later in 2016 and have remained divergent in early 2017.  The convergence seems to be associated with the strong El Niño event that peaked in early 2016.  It will be interesting to see what happens in the remainder of 2017.

Update 2017 April 4

Final March 2017 global temperature anomaly estimates for UAH, RSS, and ERAIadj have been added to the graph, as well as the final February 2017 estimate for CRUT4.

Global Temperature 2017 February Preliminary

Climate Forecast System Reanalysis (CFSR) monthly global surface temperature anomaly estimates for 2014 through February 2017 from the University of Maine Climate Change Institute (UM CCI) and from WeatherBELL (WxBELL) are graphed below.  The UM CCI CFSR estimates have been adjusted (UM adj), while the WxBELL CFSR estimates have been left unadjusted to show the difference.  Both of these estimates showed increases from January to February in 2017.  The UM CCI CFSR adjusted monthly estimates for August 2016 through January 2017 are based on final daily averages and for February 2017 are based on preliminary daily averages, and thus these preliminary monthly estimates may change slightly when the final monthly estimates are released.  Click on the graph below to see a larger copy.

figure-1-global-temp-anom-2014-2017-feb-prel

Also shown for comparison are monthly global temperature anomaly estimates from seven other major sources, including lower tropospheric estimates from the University of Alabama at Huntsville (UAH) and Remote Sensing Systems (RSS), and surface estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Interim adjusted (ERAI adj), US National Center for Environmental Information (NCEI), US National Aeronautics and Space Administration (NASA) Goddard Institute of Space Studies (GISS), the UK Hadley Climate Research Unit Temperature version 4 (CRUT4), and the Berkeley Earth Surface Temperature (BEST), all  final through January 2017, except for CRUT4 which is final through December 2016.  All estimates have been shifted to the latest climatological reference period 1981-2010.

The graph above shows that the various global temperature estimates converged in early 2016 and then diverged considerably later in 2016 and have remained divergent in early 2017.  The convergence seems to be associated with the strong El Niño event that peaked in early 2016.  It will be interesting to see what happens in the remainder of 2017.

Global Temperature 2017 January Preliminary

Climate Forecast System Reanalysis (CFSR) monthly global surface temperature anomaly estimates for 2014 through January 2017 from the University of Maine Climate Change Institute (UM CCI) and from WeatherBELL (WxBELL) are graphed below along with monthly global temperature anomaly estimates for the lower troposphere derived from satellite measurements provided by the University of Alabama at Huntsville (UAH).  The UM CCI CFSR estimates have been adjusted (CFSRadj), while the WxBELL CFSR estimates have been left unadjusted to show the difference.  All three of these estimates showed slight increases from December to January.  The UM CCI CFSR adjusted monthly estimates for August through December 2016 are based on final daily averages and for January 2017 are based on preliminary daily averages, and thus these preliminary estimates may change slightly when the final monthly estimates are released.  Click on the graph below to see a larger copy.

figure-1-global-temp-anom-2014-2017-jan

Also shown for comparison are monthly global temperature anomaly estimates from six other major sources, including lower tropospheric estimates from Remote Sensing Systems (RSS), and surface estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Interim adjusted (ERAIadj), US National Center for Environmental Information (NCEI), US National Aeronautics and Space Administration (NASA) Goddard Institute of Space Studies (GISS), the UK Hadley Climate Research Unit Temperature version 4 (CRUT4), and the Berkeley Earth Surface Temperature (BEST), all  final through December 2016.  All estimates have been shifted to the latest climatological reference period 1981-2010.

The graph above shows that the various global temperature estimates converged in early 2016 and then diverged considerably later in 2016.  The convergence seems to be associated with the strong El Niño event that peaked in early 2016.  It will be interesting to see what happens in 2017.

See the Monthly Trends page and the Daily Update page for the latest graphs of the latest monthly and daily trends for the UM CCI CFSR estimates (access from the menu at the top of this page).

Update 2017 February 6

Final January 2017 global temperature anomaly estimates for WxBELL, RSS, and ERAIadj have been added to the graph.

Update 2017 February 9

The graph has been updated to show the UM CCI January 2017 monthly estimate based on final daily estimates for January released today.

GOES-16 Preview

The first next generation US Geostationary Operational Environmental Satellite (GOES) was recently launched by the US National Aeronautic and Space Administration (NASA) on November 19th of 2016, designated as GOES-R.  This new series of satellites will provide 34 meteorological, solar and space weather products.  They orbit above a fixed point at the earth’s equator at a distance of about 22,300 miles out in space.   As with all US meteorological satellites, the US National Oceanic and Atmospheric Administration (NOAA) has taken over operation of the satellite and designated it GOES-16.  Below is a link to a visible composite color high resolution full-disk test image from midday January 15th of 2017 provided by NOAA.  To see the image in full resolution, click on the reduced image below which will take you to NOAA’s web site to view the full resolution image (use scroll bars or browser magnification tool to navigate) and you can return here by using your browser back button.

Additional test images can be seen here:
GOES-16 Image Gallery

Here is an animation showing the 16 different imagery channels available:

Below is a description of the satellite and its uses.

In May 2017, NOAA will announce the new location for GOES-16.  It will replace either GOES-East or GOES-West and will become operational in November 2017.  The next satellite in the series, GOES-S, is scheduled for launch in spring 2018 and should be operational by a year later.

Information about data access can be found here:
GOES-R User Systems

NASA also has a useful web page for viewing real-time and archived high resolution imagery from three polar orbiting satellites here:
NASA Worldview

2016 Precipitable Water Animation

I ran into this animation on the interwebs.  It’s a great visualization of atmospheric water vapor in the atmosphere and how it moves from the tropics to the poles.  Water in its various forms, including oceans, lakes, water vapor, clouds, rain, snow, ice, and glaciers, is a major player in weather and thus climate.  It is perhaps the most dominant player besides incoming solar radiation which is the main driver of the weather-climate heat engine.

Keep in mind that this animation does not show liquid water, as in clouds and fog, which are also very important in the weather-climate energy budget.  The air typically has very low water vapor content in the polar regions, allowing other greenhouse gases to have more of an effect than where water vapor is much more abundant, as in the tropics.  However, because of the very cold polar temperatures, clouds, fog, and precipitation still occur there, which somewhat limits the effect of other greenhouse gases in the polar regions.

The Earth web site where this video originated is also a great visualization tool for looking at current, past, and forecast weather conditions, as well as some ocean conditions.  Click on the link below for an example showing the current wind flow and temperature.

earth

When you visit the above link, click on the “earth” label in the bottom left corner to pop up a menu with many options to select.  Also, the J and K keys will step the selected display forward or backward one time step (3 hours).  The weather data displayed is from the Global Forecast System (GFS).  Be sure to give the globe a spin by clicking and dragging.  If you have a mouse, use the mouse roller bar to zoom in and out.